Three New Triterpenoid Saponins from the Seeds of Aesculus chinensis

Jing ZHAO, Xiu Wei YANG*, Yu Xin CUI, Xue Hui LIU
National Laboratory of Natural and Biomimetic Drugs, Beijing Medical University, Beijing 100083

Abstract

Three new triterpenoid saponins, escins IVc (1), IVd (2) and IVf (3) were isolated from the seeds of Aesculus chinensis. They were determined as 22α-tigloyl-28-acetylprotoaescigenin-3 3 -O- [β-D-glucopyranosyl ($1 \rightarrow 2$)] [β-D-glucopyranosyl $(1 \rightarrow 4)]$ - β-D-glucopyranosiduronic acid $\quad 1, \quad 22 \alpha$-angeloyl-28-acetylprotoaescigenin- 3β-O[β-D-glucopyranosyl ($1 \rightarrow 2$)] [β-D-glucopyrano- syl $(1 \rightarrow 4)]-\beta$-D-glucopyranosiduronic acid 2 and 28 -tigloyl protoaescigenin-3 β-O- [β-D-gluco-pyranosyl (12)] [β-D-glucopyranosyl ($1 \rightarrow 4$)] - β-D-glucopyranosiduronic acid 3.

Keywords: Triterpenoid saponins, Aesculus chinensis, escins IVc, IVd and IVf.

In previous papers we have reported the isolation and identification of escins Ia, Ib, IVa,
 triterpenoid saponins, named escins IVc (1), IVd (2) and IVf (3).

Compound 1 was isolated as white amorphous powder. HR-SI-MS revealed the composition of $\mathrm{C}_{55} \mathrm{H}_{86} \mathrm{O}_{24}$ by molecular ion peak at m / z 1129.5438. Compared with the ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR spectra of escin Ia, compound $\mathbf{1}$ is also a glycoside of protoaescigenin acylated by the tigloyl and the acetyl group. The significant differences between them were the chemical shifts of C-21 ($\delta 76.2$) and C-22 ($\delta 77.9$) with the corresponding protons at $\delta 4.95$ and 5.92. In addition, minor changes were also observed for C-17 ($\delta 45.9$), C-18 ($\delta 41.4$) and $\mathrm{H}-18$ ($\delta 2.75$). The stereochemistry of $\mathrm{C}-21$ and $\mathrm{C}-22$ remained unchanged as demonstrated by NOESY spectrum: Me-29 showed a strong NOE correlation with H-21 while Me-30 correlated with H-22 strongly. This was consistent with escin Ia. The attachments of the tigloyl group at C-22 and the acetyl group at C-28 were derived from HMBC experiment, which correlated the carbonyl carbons of the tigloyl and the acetyl group to H-22 ($\delta 5.92$) and H-28 ($\delta 4.02$) respectively. In addition, the number of monosaccharides in the structure was suggested by three anomeric carbon resonances at $\delta 104.4,104.0$ and 104.4 with the corresponding anomeric protons at $\delta 4.87,5.58$ and $5.18 .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR signals of the trisaccharide moiety were coincident with those of escin $\mathrm{Ia}^{1,3}$. And acid hydrolysis of compound $\mathbf{1}$ also yielded glucose and glucuronic acid. Their sequences and linkage sites were further confirmed by HMBC correlations between the following pairs: C-3 ($\delta 90.9$) and $\mathrm{H}-1^{\prime}$ (84.87); $\mathrm{C}-2^{\prime}(\delta 79.5)$ and $\mathrm{H}-1 "(\delta 5.58)$; and $\mathrm{C}-4^{\prime}(\delta 81.7)$ and $\mathrm{H}-1{ }^{\prime \prime}$ ($\delta 5.18$). Hence,
compound $\mathbf{1}$ was established as 22α-tigloyl-28-acetylprotoaescigenin-3 β-O[β-D-glucopyranosyl $(1 \rightarrow 2)$] [β-D-glucopyranosyl ($1 \rightarrow 4$)] - β-D-glucopyranosiduronic acid, and named escin IVc.

Figure 1. Structures of Compounds 1~3

Compound 2 was determined to be an isomer of 1. HRMALDI MS showed the quasimolecular ion peak at $m / z 1153.5406[\mathrm{M}+\mathrm{Na}]^{+}$, consistent with the molecular formula of $\mathrm{C}_{55} \mathrm{H}_{86} \mathrm{O}_{24}$. The only differences between them in ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were signals due to an angeloyl group [${ }^{13} \mathrm{C}$ NMR: $\quad \delta 168.1$ ($\left.\mathrm{C}-1^{\prime \prime \prime}\right)$), 129.1 ($\left.\mathrm{C}-2^{\prime \prime \prime}\right), 136.6$ (C-3"'"), 15.7 (C-4"") and 20.6 (C-5"'"); ${ }^{1} \mathrm{H}$ NMR: $\quad \delta 5.83$ (H-3"'"), 1.43 (Me-4"") and 1.92 (Me-5"'")] replaced those due to a tigloyl group. Similar HMBC and NOE correlations were also present for 2. Therefore, compound 2 was identified as 22α-angeloyl-28-acetyl-protoaescigenin-3 β-O- [β-D-glucopyranosyl $\quad(1 \rightarrow 2)$] [β-D-gluco-pyranosyl $(1 \rightarrow 4)$] - β-D-glucopyranosiduronic acid, and named escin IVd. Compounds $\mathbf{1}$ and $\mathbf{2}$ are geometrical isomers.

Table: ${ }^{13} \mathrm{C}$ NMR Spectral Data of Compounds 1-3 (δ Relative to TMS in pyridine- $d_{5}, 125 \mathrm{MHz}$)

C	1	2	3	C	1	2	3
1	38.2	38.2	38.3	$1 '$	104.4	104.3	104.5
2	26.3	26.3	26.3	2^{\prime}	79.4	79.5	79.5
3	90.9	90.8	90.8	$3 '$	76.2	76.6	76.6
4	43.4	43.4	43.4	$4 '$	81.7	81.4	82.7
5	55.8	55.8	55.9	$5 '$	75.5	75.5	76.6
6	18.3	18.3	18.3	$6{ }^{\prime}$	171.5	171.9	174.4
7	32.9	32.8	33.0	$1{ }^{\prime \prime}$	104.0	104.0	104.0
8	39.6	39.6	39.7	2 "	75.5	75.5	75.4
9	46.5	46.5	46.5	3"	78.3	78.0	78.2
10	36.1	36.1	36.1	$4 "$	69.5	69.5	69.5
11	23.8	23.8	23.9	$5{ }^{\prime \prime}$	78.1	77.8	77.8
12	123.0	123.0	123.2	$6{ }^{\prime \prime}$	61.3	61.3	61.3
13	142.3	142.2	143.1	$1{ }^{\prime \prime}$	104.4	104.3	104.2
14	41.5	41.5	41.7	2"'	74.7	74.7	74.8
15	34.4	34.4	34.6	3"'	78.1	78.3	78.0
16	67.7	68.0	68.0	4"'	71.3	71.3	71.2
17	45.9	45.7	46.6	5"'	77.8	77.8	77.6
18	41.4	41.3	40.7	$6{ }^{\prime \prime}$	62.2	62.2	62.0
19	47.2	47.2	47.6	1 ""	168.1	168.1	167.6
20	36.6	36.7	36.2	2 ""	129.6	129.1	128.0
21	76.2	76.1	75.4	3'"	136.2	136.6	138.1
22	77.9	77.8	73.4	$4 "$ "	13.8	15.7	15.8
23	22.3	22.2	22.3	5"'	12.2	20.6	20.8
24	63.1	63.0	63.1	1""	170.8	170.7	
25	15.4	15.3	15.4	2""'	20.6	20.7	
26	16.5	16.5	16.7				
27	27.2	27.3	27.3				
28	68.4	68.2	66.4				
29	30.0	30.0	30.4				
30	19.2	19.2	19.2				

Compound 3 was elucidated by comparison with escin IVe 2 \{28-tigloyl protoaescigenin-3 β-O- [β-D-glucopyranosyl $\quad(1 \rightarrow 2)$] [β-D-glucopyranosyl ($1 \rightarrow 4$)] - β-D-glucopyranosiduronic acid\}. Negative-ion HRSIMS showed a quasimolecular ion peak at m / z 1087.5319, consistent with the molecular composition of $\mathrm{C}_{53} \mathrm{H}_{84} \mathrm{O}_{23}$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR signals belonging to an angeloyl group instead of a tigloyl group were observed. HMBC experiment also identified C-28 esterification of the angeloyl group and the identical structure of the trisaccharide. With all the above evidences, compound 3 was established as 28-angeloylprotoaescigenin-3 β-O- [β-D-glucopyranosyl ($1 \rightarrow 2$)] [β-D-glucopyranosyl $(1 \rightarrow 4)$] - β-D- glucopyranosiduronic acid, and named escin IVf. It is a geometrical isomer of escin IVe.

References

1 J. Zhao, X. W. Yang, Y. X. Cui, X. H. Liu, S. Y. Liu, H. Y. Zhi, J. Y. Chen, F. B. Zhu, Z. X. Jiang, Y. L. Xue and D. B. Liu, Chin. Chem. Lett., 1999, (accepted).

2 J. Zhao, X. W. Yang, Y. X. Cui and X. H. Liu, Chin. Chem. Lett., 1999, (accepted).
3 M. Yoshikawa, T. Murakami, H. Matsuda, J. Yamahara, N. Murakami, I. Kitagawa, Chem. Pharm. Bull., 1996, 44(8), 1454.

Received 12 April 1999

